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Non-Fellerian particle systems are characterized by nonlocal interactions, somewhat
analogous to non-Gibbsian distributions. They exhibit new phenomena that are un-
seen in standard interacting particle systems. We consider freezing transitions in one-
dimensional non-Fellerian processes which are built from the abelian sandpile additions
to which in one case, spin flips are added, and in another case, so called anti-sandpile
subtractions. In the first case and as a function of the sandpile addition rate, there is a
sharp transition from a non-trivial invariant measure to the trivial invariant measure of
the sandpile process. For the combination sandpile plus anti-sandpile, there is a sharp
transition from one frozen state to the other anti-state.

KEY WORDS: Sandpile dynamics, interacting particle systems, non-Fellerian pro-
cesses, nonequilibrium phase transitions

1. INTRODUCTION

Interacting particle systems (IPS) are Markov processes with a spatial degree of
freedom. They consist of a large number of discrete components that are each
stochastically updated depending on the state of the others. Standard references
include Refs. 4, 7, 13 and 15. IPS appear in a large variety of applications but their
basic features have been shaped somewhere at the boundary between statistical
mechanics and probability theory. In statistical physics we know them mostly as
Glauber and Kawasaki processes as in the stochastic or kinetic Ising model, but
also such models as the contact and the voter model have found a wide audience.
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Dynamical studies of phase transitions, of metastability, of hydrodynamic
scaling etc. have been undertaken in the framework of IPS. Much of the motivation
in the study of IPS has however always come from the search for new phenomena.
The so called sandpile processes have in that sense been seen as an important
addition.(2) In the present paper, we investigate phase transitions that are directly
related to an important feature of such models, their nonlocality. That nonlocality
means that the updating of the configuration in some specific area can depend
(without much decay) on the previous configuration very far away from that area.
Mathematically, that property is referred to as the nonFeller property, where the
transfer operator does not leave invariant the set of continuous functions. For a
recent review concerning mathematical results on the thermodynamic limit of
sandpile models in spite of that nonlocality, see Refs. 10 and 14.

We will not stay with one specific model but we will use the sandpile model
as a starter to build various scenarios of freezing transitions. The abelian sandpile
model has been widely studied in the context of so-called self-organized criticality.
Its nonlocality, which is itself directly related to an infinite scale separation between
a reaction and a diffusion mechanism, is indeed probably very important for power-
law statistics of the avalanche size. From the point of view of probability theory, it is
the best known case of a spatially extended non-Fellerian stochastic dynamics.(8) It
has challenged our basic understanding of the construction of interacting processes
in infinite volume, even in one dimension.

In one dimension, the stationary measure of the standard abelian sandpile
model is trivial in the thermodynamic limit. However the dynamics of relaxation
to this measure is non-trivial. In Ref. 9 we have constructed the dynamics for the
one-dimensional sandpile model on the infinite lattice Z. The result is a monotone
non-Fellerian process which converges in finite time to its unique stationary state,
which is concentrating on the maximal configuration. As soon as one changes
to other lattices, such as decorated one-dimensional lattices, the triviality of the
limiting stationary measure disappears, and especially in one dimension exis-
tence of thermodynamic limits is not guaranteed due to the presence of infinite
avalanches.(5)

In the present paper, we combine the one-dimensional sandpile model with
a spin-flip dynamics (pure spin flip as well as Glauber type or more general spin
flip processes with positive rates). Indeed, in one dimension, the standard sandpile
model has only two possible heights per site, and spin flip just means changing
the height from one to the other. In the language of sandpiles, adding a pure spin
flip is the simplest example of combining two different toppling mechanisms, the
spin-flip part corresponding to a purely dissipative (diagonal) toppling matrix.
More precisely, in Sec. 3, our dynamics has a formal generator

L f (η) = αLsandpile f (η) + Lflip f (η)

= α
∑

x∈Z

[ f (axη) − f (η)] +
∑

x∈Z

c(x, η) [ f (θxη) − f (η)] (1.1)
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where ax denote the abelian sandpile addition operators, and θx the flip operator, on
configurations η ∈ {1, 2}Z. In words that means that at rate α we add and stabilize
according to the abelian sandpile rule, and at rate c(x, η), we just flip the value of
the height where we added. In that way we have a parameter α that describes the
relative weight of the sand additions versus the spin flips. The resulting “sand-flip”
dynamics shows a freezing transition as a function of that α. Observe that the rates
remain bounded away from zero. In the simplest case where c(x, η) = 1 (adding
pure spin flip), our main result says that for α ≥ αc = 1 there is a finite time
after which the system reaches the maximal configuration (i.e., the sandpile part
“wins”), whereas the unique stationary measure is non-trivial and mixing under
spatial translations for α < 1. That is a strong manifestation of the nonlocality of
the dynamics. Indeed, for Fellerian processes such phenomenon cannot occur: the
freezing state is invariant for the sandpile part of the generator but not for the spin-
flip part. We prove by almost explicit construction that this freezing transition
occurs for general bounded and positive spin-flip rates c(x, η), and we give an
explicit example where the effect of a non-trivial interaction in the rates on the
value of the transition point αc can be computed.

As a second example of such “competition between generators,” in Section
4 we consider a combination of a sandpile and an anti-sandpile process. This
dynamics is inspired by Ref. 6. The anti-sandpile part of the dynamics consists
of removing grains (“adding holes”) and stabilizing by reverse topplings. The
infinite volume limit of the anti-sandpile stationary measure is a Dirac measure
concentrating on the minimal configuration. Our main result here is that unless
the rates of addition and subtraction are equal, the limiting stationary measure is a
Dirac measure corresponding to the dominant rate. We thus have a sharp transition
between two different frozen states.

These nonequilibrium phase transitions have an interest of their own but
they also go some way in adding extra and physically relevant interactions to
the standard abelian sandpile. We have in mind the sticky sandpiles of Ref. 3,
for which our dynamics is a subclass, and for which various transitions have
been numerically checked. Our freezing transition was also and for the first time
seen in a type of queueing model,(12) which was built in strong analogy with the
constructions of the one-dimensional sandpile process in Ref. 9. As a final note,
it is interesting to make the analogy with non-Gibbsian measures. In some sense,
they are the “equilibrium analogue” of non-Fellerian interacting particle systems.
In Ref. 11 an example of a freezing transition was obtained, strongly connected
again with the absence of continuity of the local conditional probabilities.

2. NON-FELLERIAN PROCESSES

We start with a short introduction to the somewhat unusual mathematical
features of non-Fellerian processes. They are important to keep in mind for what
follows.
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We take the state space of our process to be � = {1, 2}Z. One can think
of having either height one or height two at each site of the integer lattice. Two
configurations are close by (have a small distance) if they coincide on a large
interval. Local functions f (η) only depend on a finite number of coordinates in
η ∈ �. Continuous functions are those that can be approximated by local functions.

In the theory of IPS, an important tool is the semigroup S(t) of the process.
For every time t ≥ 0, it gives the transfer operator f �→ S(t) f on the level of
functions (or, observables) f . A Feller-semigroup maps continuous functions into
continuous functions. If we have a local function f , then S(t) f would still be
continuous. For the process, it means that for example the height at the origin
depends on the previous (in time) configuration mostly in a finite region. That
gets also reflected in the relation with the generator L of the process. If S(t) is a
Feller-semigroup, then there exists a uniformly dense set of continuous functions
which are in the domain of the generator, i.e., for which

lim
t↓0

‖(S(t) f − f )/t − L f ‖∞ = 0. (2.1)

This implies the right-continuity of the semigroup. Non-Fellerian processes need
not satisfy that.

As another example, usually in standard IPS one “finds” a stationary distri-
bution µ by solving

∫
L f dµ = 0 (arbitrary f ) for µ. For non-Fellerian processes,

a stationary distribution µ need not satisfy
∫

L f dµ = 0 for all local functions f ,
even though µS(t) = µ. Another way to “find” a stationary distribution in IPS is to
look at the (time-) asymptotic behavior. One then follows the time-evolution of the
distribution which, one hopes, would settle in a stationary distribution after some
transient regime. To see what can happen for a non-Fellerian process, consider
the following example. Starting from a configuration η ∈ �, we flip a 1 to 2 at
rate 1, independently for all lattice sites, and if the configuration is 2 (all two),
then we flip it at rate one to the minimal configuration η ≡ 1, denoted by 1. That
is a non-Fellerian process with convergence µS(t) → δ2 (where δ2 is the Dirac
measure concentrating on the configuration 2) for all translation invariant mea-
sures µ 
= δ2, but clearly, δ2 is not invariant. In fact, that process has no invariant
measure!

3. ADDING SPIN FLIPS TO THE SANDPILE PROCESS

The state space of our process is � = {1, 2}Z. For a configuration η ∈ �,
η(x) ∈ {1, 2} is usually interpreted as the height or the number of grains at site
x . That language can be continued even when combining the sandpile automaton
with other dynamics but we prefer to use the words “active” for η(x) = 2 and
“inactive” for η(x) = 1.
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The dynamics will change the configuration according to a combination of
the standard sandpile model and a spin flip dynamics. We start with the simplest
form of spin flip, changing “active” into “inactive” and vice versa at rate 1: the
spin flip θx is thus defined as

(θxη)(y) =
{

3 − η(x), if y = x

η(y), if y 
= x
(3.1)

Only in Sec. 3.4 will we generalize the spin flip part of the dynamics.
For the sandpile dynamics, we can rely on our previous work in Ref. 9

where we have studied the infinite volume limit of the one-dimensional sandpile
process. We will therefore not bother to redo the limiting procedures but below
we immediately give the result, the form of the infinite volume addition operators
ax . The informal verbal prescription of the sandpile dynamics goes as follows: if a
site is inactive, it becomes active at rate α. If the site x is already active, one looks
left and right of x at the closest sites x−

η and x+
η which are inactive. Again at rate

α these two become active and the mirror image of x with respect to the middle of
[x−

η , x+
η ] becomes inactive. That corresponds, in the infinite volume limit, to the

result (in finite volume) of adding and stabilizing through a sequence of topplings,
where upon a single toppling of a site the site looses two grains and gives one
grain to each neighbor, except if the site is at the boundary where there is only
one neighbor receiving a grain. See Ref. 9 and 14 for more details on the abelian
sandpile model in d = 1.

The infinite volume addition operator ax is defined more precisely as follows.
For η ∈ � and x ∈ Z with η(x) = 1, we have axη = η + ex (where ex (x) = 1 and
ex (y) = 0 otherwise), i.e., inactive becomes active, or, the height one at x simply
changes to height two (and no other changes). For η ∈ � and x ∈ Z with η(x) = 2
we look at the right – respectively at the left – of x to find the first site x+

η (if that
site does not exist we put x+

η = ∞), – respectively x−
η (if that site does not exist

we put x−
η = −∞) – with η(x+

η ) = η(x−
η ) = 1. We then define

(axη)(y) =

⎧
⎪⎨

⎪⎩

1 if y = xη := x+
η + x−

η − x

2 if y 
= xη, and x−
η ≤ y ≤ x+

η

η(y) otherwise

(3.2)

if both x+
η and x−

η exist. In words, upon adding one unit at x , the first sites at
height one to the left (x−

η ) and to the right of x (x+
η ) become sites with height 2,

and the site which is the mirror image of x with respect to the middle of x+
η and

x−
η becomes of height one, all other sites remain unaltered. We have to extend that

definition to cases where one of the sites x+
η , x−

η does not exist (i.e., when there is
no site to the right or to the left of x having height one). That is done by taking the
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limit with “boundary condition 1,” i.e., if at least one of the x±
η is infinite, then

(axη)(y) =
{

2 if x−
η ≤ y ≤ x+

η

η(y) otherwise
(3.3)

Remark that (3.1) is a special case of “addition” with “purely dissipative toppling,”
i.e., upon toppling an active site two grains disappear (diagonal toppling matrix).
In that sense combination of ax and θx is the simplest example of combining two
different toppling mechanisms (matrices) in one process.

3.1. Construction

Intuitively, our process is governed by two independent collections of Poisson
processes, N x, f

t , N x,a
t , indexed by sites x ∈ Z, and independent for different sites.

On the event times of N x,a
t we apply the addition operator, and on the event times

of N x, f
t we “flip” the state, i.e., we apply θx . We put the rate of the “sandpile-

clocks” equal to α, and the rate of the “flip-clocks” equal to one. Formally, our
process has as a generator on local functions f : � → R,

L f (η) = α
∑

x∈Z

( f (axη) − f (η)) +
∑

x∈Z

( f (θxη) − f (η))

:= αL S f (η) + L F (η) (3.4)

where L S stands for “sandpile generator” and L F for “flip-generator.”
To show that there exists a Markov process with càdlàg-paths corresponding

to the Poisson process description above or to the formal generator (3.4), we use a
monotonicity argument analogous to the one in Ref. 9. We repeat the main steps
and the minor modifications to be done here. First we define the action of ax on η

as a “birth” if η(x) = 1, and as an avalanche if η(x) = 2, whereas the action of θx is
(of course) also called a birth if η(x) = 1 (leading to θx (η(x)) = 2), and a “death”
if η(x) = 2 (leading to θx (η(x)) = 1). We can then split the formal generator in
three parts:

L = La + Lb + Ld (3.5)

where

La f (η) = α
∑

x∈Z

χ (η(x) = 2)( f (axη) − f (η))

Lb f (η) = (1 + α)
∑

x∈Z

χ (η(x) = 1)( f (θxη) − f (η))

Ld f (η) =
∑

x∈Z

χ (η(x) = 2)( f (θxη) − f (η)) (3.6)
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Here, χ (.) denotes the indicator function. The construction is then as follows:

• Construct a process corresponding to La + Ld (only avalanches and
deaths) on the set � f of configurations with a finite number of sites with
height 2. That is a (non-explosive) countable state space Markov chain on
the set of finite subsets of Z. Show by coupling that that process is mono-
tone. The coupling is identical to that of Ref. 9 for the avalanche events.
For the deaths: we let two twos die together if possible, and otherwise
independently.

• Construct a process corresponding to La + Ld with births in a finite inter-
val, i.e., having generator

Ln f (η) = (La + Ld ) f (η) + (1 + α)
n∑

x=−n

χ (η(x) = 1)( f (θxη) − f (η))

We construct that process once more as a countable state space Markov
chain, and show that it is monotone. Its semigroup et Ln is denoted by Sn(t).
Moreover, we have the following monotonicity as a function of the interval
on which we allow births: for all t > 0, n ∈ N, f monotone, η ∈ � f ,

(Sn(t) f )(η) ≤ (Sn+1(t) f )(η)

• For general monotone f and η ∈ � arbitrary:

S(t) f (η) := sup
n∈N

sup
η∈� f

Sn(t) f (η) (3.7)

The process obtained by the above construction is called the SF-process (sand-flip
process). We denote its path space measure starting from η by Pη.

3.2. Basic Properties

Besides monotonicity, the SF-process has very similar “quasi-Feller” prop-
erties as the one-dimensional sandpile process of Ref. 9. In particular, we have the
following analogue of Theorem 5.1 of Ref. 9. Let us denote by �′ ⊂ � the config-
urations with an infinite number of ones to the left and to the right of the origin. We
then enumerate η−1{1} = {Xi (η), i ∈ Z} where X0(η) := min{x ≥ 0 : η(x) = 1},
and the other Xi are in increasing order the sites where η(x) = 1. The Xi define the
η-dependent disjoint intervals Ii = (Xi−1(η), Xi (η)]. A function is called N -local
if it depends on the heights η(i) for i ∈ ∪N

j=−N I j . Every local function is N -local,

but a N -local function can be non-local, e.g. f (η) = e−|X1(η)| is bounded 1-local,
but non-local. The idea is that the natural space to define the action of iterates of
the generator is the set of N -local functions. That is made precise in the following
definition and proposition.
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Definition 1. A configuration η ∈ �′ is called decent if

a(η) = lim sup
n→∞

1

2n

n∑

i=−n

|Xi (η) − Xi−1(η)| < ∞ (3.8)

The set of decent configurations is denoted by �dec.

Proposition 1. Let η ∈ �dec, f be bounded and N-local, then for t < 1/[4(1 +
α)ea(η)], the series

∑∞
n=0[tn(Ln f )(η)]/(n!) converges absolutely and equals

S(t) f (η), where S(t) is the semigroup of the process defined above. In particular

lim
t→0

S(t) f (η) − f (η)

t
= L f (η) (3.9)

i.e., L is the “pointwise generator” of the process.

Proof: The same proof of Ref. 9 can be used, if one notices that the extra “death”
part of the generator can only split one of the intervals Ii into smaller ones, by
creating an extra 1. This implies that if f is N -local, then [ f (aiη) − f (η)] = 0 for
all i ∈ Z \ ∪N+1

j=−N−1 I j . Therefore L f depends only on the heights in ∪N+1
j=−N−1 I j .

Iterating the argument, one sees that Ln f depends only on height in ∪N+n
j=−N−n I j ,

and one recovers the same estimate

‖(Ln) f ‖∞ ≤
n∏

k=0

(
N+k∑

i=0

|Ii |
)

2n(1 + α)n‖ f ‖∞ (3.10)

which gives the result of the proposition, by application of Lemma 4.1 in Ref. 9.
�

The following result, analogous to Corollary 6.1 in Ref. 9 and to
Proposition 3.1 in Ref. 12, shows that the process is always non-Feller.

Proposition 2. For all α > 0, the SF-process is non-Feller.

Proof: We denote by 2 the maximal configuration η ≡ 2. We define the config-
uration ηspec by

ηspec(x) =
{

1 if x = 0

2 otherwise
(3.11)

Then one shows as in Ref. 12 that for f0(η) = η(0)

lim
t→0,t>0

S(t) f0(ηspec) = 2 (3.12)
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i.e., by the avalanche part of the dynamics, the isolated 1 is turned “immediately”
into a 2. Therefore, the right limit of ηt as t → 0, t > 0 is almost surely equal to
2 when we start from ηspec.

This lack of right-continuity contradicts the Feller property. A dense set of
continuous functions such as in (2.1) contains a function f such that

f (ηspec) 
= f (2) (3.13)

Combination of (3.12), (2.1), and (3.13) gives a contradiction. �

3.3. Stationary Measure

Denote by I the set of invariant probability measures of the SF-process
defined in the previous section. Let S be the set of translation invariant probability
measures on �. We denote by δ1, resp. δ2 the Dirac measure concentrating on the
configuration η ≡ 1 resp. η ≡ 2.

By monotonicity of the process I contains the limits

νi := lim
t→∞ δi S(t) (3.14)

so, in particular, I is not empty. In fact we have

Theorem 1. For all α > 0, I = {µα} and for all probability measures ν on �,

lim
t→∞ νS(t) = µα (3.15)

Moreover,

(a) for α < 1, the density of sites with height one is given by
∫

χ (η(0) = 1)dµα = 1 − α

2
(3.16)

and µα is a translation invariant measure which is mixing under transla-
tions and non-product.

(b) For α ≥ 1,

µα = δ2 (3.17)

Moreover for t > [log(α + 1) − log(α − 1)]/2 and for every η ∈ �,

Pη(ηt (0) = 2) = 1.

Proof: We start with the following lemma.
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Lemma 1. Let µ be a probability measure on � that is mixing under spatial
translations, with

∫
χ (η(0) = 1)dµ = ρ > 0. Then we have

(a) If t < ρ/[4(1 + α)e], then µS(t) is mixing under spatial translations.
(b) Let t(α, ρ) be the solution of

ρe−2t + 1 − α

2
(1 − e−2t ) = 0 (3.18)

when it exists, otherwise by definition t(α, ρ) = +∞. Then we have for all
t < t(α, ρ), µS(t) is mixing under spatial translations and

d

dt

∫
η(0)d(µS(t)) =

∫
Lη(0)d(µS(t)) (3.19)

ρ(t) :=
∫

χ (η(0) = 1)d(µS(t)) = ρe−2t + 1 − α

2
(1 − e−2t ) (3.20)

Proof: (a) Is exactly as in Ref. 9, Lemma 6.1.
(b) Let t0 = inf{ρ/[5(1 + α)e], t(α, ρ)}; by a), (3.19) holds for t ≤ t0.
Denote

k+(i, η) = inf{ j ≥ 0 : η(i + j) = 1} (3.21)

k−(i, η) = inf{ j > 0 : η(i − j) = 1} (3.22)

We compute

Lη(0) = αχ (η(0) = 1)(k+(1, η) + k−(0, η) + 1) + 3 − α − 2η(0) (3.23)

For ν ∈ S (see Ref. 9, (6.77)),
∫

χ (η(0) = 1)k−(0, η) dν =
∫

χ (η(0) = 1)(k+(1, η) + 1) dν = 1

so that ∫
Lη(0)d(µS(t)) = α + 3 − 2

∫
η(0) d(µS(t))

= α − 1 + 2
∫

χ (η(0) = 1) dµS(t) (3.24)

and hence

dρ(t)

dt
= −α + 1 − 2ρ(t)

which gives (3.20) for t < t0. If t0 
= t(α, ρ), then we can start the reasoning anew
and iterate from t0 to t1 = min{ρ(t0)/[5(1 + α)e], t(α, ρ(t0))}, with new initial
distribution µS(t0). As a consequence, for 0 ≤ t ≤ t0 + t1, ρ(t) is still given by
(3.20), etc. �
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By monotonicity, the invariant measures defined in (3.14) satisfy ν1 ≤ ν2.
Moreover, the process is totally ergodic (in the sense of Ref. 7, chapter 1,
Definition 1.9), i.e., I is a singleton if and only if ν1 = ν2. In that case ν1 = ν2

is also mixing under spatial translations, see Ref. 1 Theorem 1.4 (ii); indeed, the
proof of the latter is a computation that does not involve the Feller property of the
considered Markov semi-group, and that relies on the following property (proven
as in Ref. 9, Lemma 6.1).

lim
|x |→∞

∫
|S(t)[ f τx g] − S(t) f S(t)(τx g)|dµ = 0

for all local functions f, g on �, where τx denotes the spatial shift by x ∈ Z.
First consider α < 1. Then t(α, ρ) = ∞ for all ρ > 0. Let λρ denote the

translation invariant product measure on � with λρ(η(0) = 1) = ρ. Then λρ ↑ δ2

when ρ ↓ 0. Therefore, using monotonicity and item b) of Lemma 1, we obtain
for all t ≥ 0

∫
χ (η(0) = 1) d(δ2S(t)) = lim

ρ↓0

∫
χ (η(0) = 1) d(λρ S(t))

= lim
ρ↓0

(
ρe−2t + 1 − α

2
(1 − e−2t )

)

= 1 − α

2
(1 − e−2t ) (3.25)

Therefore, in the notation (3.14),

ν2(η(0) = 1) = 1 − α

2
(3.26)

On the other hand starting from δ1, we have t(α, ρ) = t(α, 1) = ∞, and we
obtain from item b) of Lemma 1

lim
t→∞

∫
χ (η(0) = 1) d(δ1S(t)) = lim

t→∞

(
e−2t + 1 − α

2
(1 − e−2t )

)
= 1 − α

2
(3.27)

ν1(η(0) = 1) = ν2(η(0) = 1) = 1 − α

2
(3.28)

and combining that with ν1 ≤ ν2, gives ν1 = ν2.
To see that µα is not a product measure, observe that because µα ∈ S, it

can be product only if µα = λρ with ρ = (1 − α)/2. Therefore, for all f local∫
L f dλρ = 0. Indeed λρ concentrates in decent configurations, so we are al-

lowed to use the generator by Proposition 1. Notice that in the sandpile part of
the dynamics two or more neighboring ones can never be created. Therefore,
one computes the action of the sandpile part of the generator on the function
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Hn(η) = χ (η(1) = · · · = η(n) = 1) with n ≥ 2, which gives after integration over
the product measure

∫
L S Hndλρ = −nρn − 2

∞∑

i=0

i(1 − ρ)iρn+1 = −nρn − 2ρn−1(1 − ρ) (3.29)

For the spin-flip part one has
∫

L F (Hn)dλρ = −nρn + nρn−1(1 − ρ) (3.30)

Therefore, for the combined dynamics, the condition that λρ is stationary
leads to

∫
(αL S + L F )(Hn) dλρ = 0 = ρn−1 (−nρ + n(1 − ρ) − nαρ − 2α(1 − ρ))

(3.31)
which gives (for n ≥ 2)

ρ = n − 2α

2n + (n − 2)α
(3.32)

Notice that Eq. (3.31) is not valid for n = 1, because a single one can be
created in the sandpile dynamics, so an extra term (1 − ρ) should be added for
n = 1. Since 3.32 should be valid for all n ≥ 2, we obtain a contradiction. Hence,
the invariant measure is indeed non-product.

For α = 1, (3.25) is still valid (indeed, t(1, ρ) = ∞ for all ρ ∈ (0, 1)) and
this gives

∫
χ (η(0) = 1) d(δ2S(t)) = 0

Therefore δ2S(t) = δ2. On the other hand, item b) of Lemma 1 gives

lim
t→∞

∫
χ (η(0) = 1) d(δ1S(t)) = 0

Therefore ν1 = δ2, hence we obtain ν1 = ν2 = δ2.
Finally, consider α > 1. Then we have

t(α, 1) = 1

2
log

(
α + 1

α − 1

)
(3.33)

Hence, for all ε > 0 there exists t0 < t(α, 1) such that for all t > t0
∫

χ (η(0) = 1) d(δ1S(t)) < ε

Therefore, ν1 = limt→∞ δ1S(t) = δ2, and we conclude from the inequalities
ν1 = δ2 ≤ ν2, and ν2 ≤ δ2 that ν1 = ν2 = δ2.
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Moreover, we obtain that from any initial distribution ν, the limiting measure
δ2 is reached in finite time Tν ≤ t(α, 1). �

Remark 1. For α ≥ 1, we have
∫

Lgdµα 
= 0 for non constant g, since for the
sandpile part

∫
L Sgdµα = 0, whereas for the flip part

∫
L F gdµα 
= 0. Therefore,

in that case the invariant measure cannot be found by solving
∫

L f dµ = 0 for µ,
which gives another argument for the non-Fellerian character of the SF-process,
see also under Sec. 2.

3.4. Robustness of the Freezing Transition

In this section we consider more general local perturbations of the sandpile
generator. We show that the freezing phenomenon, i.e., having δ2 as unique invari-
ant measure for α large enough, and a non-trivial invariant measure for α small
persists.

More precisely, we consider a formal generator of the type

L = αL S + LG (3.34)

where LG is the generator of a spinflip dynamics (i.e., with possibly configuration
dependent rates):

LG f (η) =
∑

x∈Z

c(x, η)( f (θxη) − f (η)) (3.35)

where the flip-rates c(x, η) are supposed to be translation invariant, local and
bounded from below. Therefore,

m ≤ c(x, η) ≤ M (3.36)

for some 0 < m ≤ M < ∞ independent of η.
To define this process, we use a series expansion as in Proposition 1 to define

the semigroup. Remark that since we do not assume that LG is the generator
of a monotone process, the semigroup cannot be constructed by monotonicity.
Instead, S(t) f (η) is defined by the series expansion as long as the configuration η

is decent, and contrary to the monotone case, this cannot necessarily be extended
to non-decent configurations such as the maximal configuration 2.

We then have the following

Theorem 2. Consider the process with formal generator (3.34). We have

1. For α < m, δ2 is not an invariant measure. In fact, if µ ∈ S is an invariant
measure, then

µ(η(0) = 1) ≥ m − α

2M
(3.37)
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2. If α > M, then for all µ ∈ S, with µ(η(0) = 1) > 0, µS(t) → δ2 as t →
∞. Therefore, δ2 is the only possible invariant measure.

Proof: Let µ ∈ S be such that µ(η(0) = 1) > 0. We denote ρt = (µS(t))
(η(0) = 1). Then by the obvious generalization of Lemma 1, we write

dρt

dt
= −α − 2

∫
χ (η(0) = 1)c(0, η) d(µS(t)) +

∫
c(0, η) d(µS(t)) (3.38)

Therefore

−α − 2Mρt + m ≤ dρt

dt
≤ −α − 2mρt + M (3.39)

Hence, if α < m and ρt < (m − α)/2M ,

dρt

dt
> 0

so there can be no invariant measure µ with ρ = µ(η(0) = 1) < (m − α)/2M .
That proves the first item of the theorem. For the second item, if α > M and if
ρt > 0, (3.39) gives

dρt

dt
< 0

and hence there cannot be an invariant measure with ρ = µ(η(0) = 1) > 0. �

Remark 2. Even if µS(t) converges to δ2 for all µ ∈ S with µ(η(0) = 1) > 0,
we cannot conclude that δ2 is an invariant measure, because the process is not
Feller, see under Sec. 2.

If LG is the generator of a monotone process, then more precise results can
be obtained. For that case we will stick to an explicit example where once more
an explicit closed equation for the density can be obtained. More precisely, we
consider the flip rates

c(x, η) = 1 − γ fx (η)( fx−1(η) + fx+1(η)) (3.40)

where

fx (η) = 1 − 2χ (η(x) = 1)

These rates correspond to the standard Glauber choice for

γ = 1

2
tanh(2β) ∈

[
−1

2
,

1

2

]

where β denotes the inverse temperature (here without any meaning except for an
effective coupling constant). We then have the following analogue of Theorem 1.
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Theorem 3. For the process with formal generator (3.34), and rates (3.40) we
have

1. For α < αc = 1 − 2γ , there exists a unique non-trivial invariant measure
µα with

µα(η(0) = 1) = 1

2

(
1 − α

αc

)
(3.41)

2. For α ≥ αc , δ2 is the unique invariant measure.

Proof: Since the rates (3.40) satisfy Definition 2.1 of chapter 3 in Ref. 7, the
process with generator LG is monotone. Therefore, we can construct the process
with generator (3.34) by monotonicity as in Section 3.1, where we replace the
coupling for the birth and death part by basic coupling. In particular the thus
obtained generalized SF-process is monotone. For µ ∈ S with µ(η(0) = 1) > 0
we obtain

dρt

dt
= −α + (1 − 2ρt )(1 − 2γ ) (3.42)

and from that equation, combined with monotonicity we can proceed as in the
proof of Theorem 1. �

Remark 3. As one would expect intuitively, the critical value αc is decreasing
in γ , i.e., the freezing is enhanced by stronger coupling.

Another simple choice in which we explicitly see the effect on αc is obtained
by adding a bias to the spin flip. Then, (3.40) becomes

c(x, η) = 1 − κ fx (η) = (1 − κ)χ (η(x) = 2) + (1 + κ)χ (η(x) = 1)

and a similar calculation yields the same result but with a critical value that now
equals αc = 1 − κ .

4. ADDING “ANTI-ADDITIONS” TO THE SANDPILE PROCESS

4.1. The Anti-Sandpile Model

In words, the anti-sandpile process is a process where grains are removed
from a configuration η ∈ �, and afterwards (if necessary) the configuration is
stabilized instantaneously by reversed topplings.

We first define the finite-volume process, in [−N , N ]. If after removing
grains the height is zero at one or more sites x ∈ [−N , N ], then the configuration
stabilizes by a sequence of reversed topplings. Upon a reversed toppling of a site
x ∈ [−N , N ] the site gains two grains and each of its neighbors (in [−N , N ])
looses one grain. This means that in a reversed toppling, the boundary sites act
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as a source (instead of a sink in the ordinary toppling rule). The anti-addition
operator a†

x is then defined as the stable result of the subtraction of one unit at site
x and performing reversed topplings until the configuration is stable (i.e., height
everywhere 1 or 2) again.

Remark 4. The anti-addition operator should not be confused with the inverse
a−1

x of the addition operator ax . In fact, if η is recurrent, and a†
x η is recurrent, then

a†
x η = a−1

x (η), but a†
x η need not be recurrent even if η is.

In finite volume, the generator of the anti-sandpile process is given by

L† =
N∑

x=−N

(a†
x − I ) (4.1)

where I denotes the identity operator. Remark that a†
x = θaxθ and

L† = �L� (4.2)

where � is “global spinflip” on functions and θ is “global spinflip” on configura-
tions, i.e.,

(� f )(η) = f (θη) (4.3)

with θη(x) = 3 − η(x). Therefore the extension of the process generated by L† to
infinite volume is immediate. Its semigroup is given by

S(t)† = �S(t)� (4.4)

where S(t) is the semigroup of the sandpile process.
In infinite volume, the “anti-addition operator” a†

x is then defined via

a†
x η = (θaxθ )(η)

Similarly to (3.21)–(3.22), we introduce

l±(x, η) = k±(x, θη)

and the intervals Ji (η) = Ii (θη).

4.2. The SA Process

We now define the SA-process (i.e., “sandpile + anti-sandpile”) as the process
associated to the formal generator

Lαβ = αL + βL† (4.5)

where L = L S = ∑
x∈Z

(ax − I ) (3.4).



Freezing Transitions in Non-Fellerian Particle Systems 187

This process is constructed as follows: we define the semigroup acting on
local functions via the series expansion of Proposition 1. This gives the finite
dimensional distributions, and hence defines a unique Markov process starting
from “decent” configurations, where decent means here that both η and θη are
decent in the sense of Definition 1. We call the thus defined process the “SA-
process.”

We then have the following.

Proposition 3. The SA-process is monotone. As a consequence, it can be defined
starting from any initial configuration.

Proof: In Ref. 9 we constructed a generator for a coupling of the sandpile process
which preserves the order. The idea of this coupling is that if η ≤ ξ , then, for each
site j having height two in ξ which by an addition at some site i ∈ Z could be
turned into a one, in η either the height of j is one or there exists a unique site
x( j, η, ξ ) having height two in η such that addition at that site creates in η a site
of height one.

Let us call Lc
S the (formal) generator of this coupling. Remark now that if

η ≤ ξ then of course θη ≥ θξ , and for all f monotone, � f is also monotone.
Therefore, the coupling with generator

(Lc f )(η, ξ ) = α
(
Lc

S f
)
(η, ξ ) + β

(
Lc

S(� f )
)
(θη, θξ ) (4.6)

defines a coupling that preserves the order.
This proves monotonicity. The consequence follows since every configuration

can be written as an increasing (or decreasing) limit of decent configurations. �

4.3. Stationary Measures for the SA Process

We denote by I the set of invariant measures for the SA process, of generator
(4.5). We then have the following analogue of Theorem 1.

Theorem 4. We have

• For α < β

I = {δ1}
• For α > β,

I = {δ2}
• For α = β

Ie ⊃ {δ1, δ2}
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Proof: We compute as before, starting from a translation invariant measure µ

concentrating on decent configurations:
∫

L Sχ (η(0) = 1) dµ = −1

so that, since χ (η(0) = 1) + χ (η(0) = 2) = 1,
∫

L†χ (η(0) = 1) dµ = +1

Hence, starting from an initial measure µ on � which is translation invariant,
mixing and which concentrates on decent configurations, we obtain, using (as in
the proof of Theorem 2) the notation ρt = (µS(t))(η(0) = 1):

dρt

dt
= −

∫
(αL + βL†)(χ (η(0) = 1))d(µS(t)) = (β − α)

Of course this equation is only valid as long as 0 ≤ (β − α)t < 1. It expresses
that the density of ones simply decreases or increases linearly until no ones are
present, resp. all sites are of height one.

Notice that we used here the analogue of Proposition 1, which in this case
implies that one can use the generator as in the Feller case as long as it is acting
on local functions and integrated over measures with a non-zero density of sites
having height two, and of sites having height one.

Starting from this equation, one concludes that for α > β (and similarly for
α < β), there can be no other invariant measure (which is also translation invariant)
than δ2 (resp. δ1). We then deduce the first two statements of the theorem along
the same lines as in Theorem 1, using monotonicity (by Proposition 3).

For the last statement, use that if α = β,

dρt

dt
= 0 (4.7)

Therefore, using standard arguments based on monotonicity, we see that δ1 and δ2

are invariant measures. �

Remark 5. For the case α = β we have (4.7), i.e., the density is a conserved
quantity. An open question here is whether in that case for each density there exists
a stationary (in time) and ergodic (under translations) measure with that density
or whether the only extremal invariant measures are {δ1, δ2}.

In that case, we can however say the following:

1. If µ is translation invariant, invariant for the dynamics, and with density
0 < ρ < 1, then µ� is also invariant for the dynamics. Indeed, for any
decent function f , � f is also decent, and

∫
(L S + �L S�) f dµ = 0 is

equivalent to
∫

(L S + �L S�)(� f )d(µ�) = 0.
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2. The product measure λρ with density λρ(η(0) = 1) = ρ is not invariant.
Indeed, we can proceed as in the proof of Theorem 1, and compute, for
Hn(η) = χ (η(1) = · · · = η(n) = 1) with n ≥ 2,

∫
(L S + L†)(Hn) dλρ = ρn−1(1 − ρ)(n − 2) (4.8)
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Mathematics 1608, Springer-Verlag, New York.
5. A. Jarai and R. Lyons: in preparation.
6. R. Karmakar and S. S. Manna, Particle-hole symmetry in a sandpile model. J. Stat. Mech. L01002

(2005).
7. T. M. Liggett, Interacting Particle Systems, Springer, 2005.
8. C. Maes, New Trends in Interacting Particle Systems. Markov Proc. Rel. Fields 11(2):283–288

(2005).
9. C. Maes, F. Redig, E. Saada, and A. Van Moffaert, On the thermodynamic limit for a one-

dimensional sandpile process. Markov Proc. Rel. Fields 6:1–22 (2000).
10. C. Maes, F. Redig, and E. Saada, Abelian sandpile models in infinite volume. Sankhya, Indian J.

Statist. 67(4):634–661 (2005).
11. C. Maes and S. B. Shlosman, Freezing transition in the Ising model without internal contours.

Prob. Th. Rel. Fields 115:479–503 (1999).
12. Meester, R. and Quant, C., On a long range particle system with unbounded flip rates. Markov

Processes Relat. Fields 9:59–84 (2003).
13. Mu Fa Chen, From Markov Chains to Non-equilibrium Particle Systems, World Scientific (2004).
14. Redig, F., Mathematical aspects of abelian sandpiles, Lecture notes for Les Houches Summer

school on mathematical statistical physics, Elsevier; to appear (2005).
15. A. L. Toom, N. B. Vasilyev, O. N. Stavskaya, L. G. Mityushin, G. L. Kurdyumov, and S. A.

Pirogov, Discrete Local Markov Systems. In Stochastic cellular systems: ergodicity, memory,
morphogenesis, R. L. Dobrushin, V. I. Kryukov, and A. L. Toom, (eds.) (Manchester University
Press, pp. 1–182, 1990).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


